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Abstract—Linear Discriminant Analysis (LDA) is a well-known
technique for supervised dimensionality reduction, and has been
extensively applied in many real-world applications. LDA as-
sumes that the samples are Gaussian distributed, and the local
data distribution is consistent with the global distribution. How-
ever, real-world data seldom satisfies this assumption. To handle
the data with complex distributions, some methods emphasize the
local geometrical structure, and perform discriminant analysis
between neighbors. But the neighboring relationship tends to be
affected by the noise in the input space. In this research, we pro-
pose a new supervised dimensionality reduction method, namely
Locality Adaptive Discriminant Analysis (LADA). In order to
directly process the data with matrix representation, such as
images, the 2-Dimensional LADA (2DLADA) is also developed.
The proposed methods have the following salient properties: (1)
they find the principle projection directions without imposing
any assumption on the data distribution; (2) they explore the
data relationship in the desired subspace, which contains less
noise; (3) they find the local data relationship automatically
without the efforts for tuning parameters. The performance on
dimensionality reduction shows the superiorities of the proposed
methods over the state-of-the-arts.

Index Terms—Dimensionality reduction, feature extraction,
discriminant analysis, manifold structure

I. INTRODUCTION

IN many research areas, such as machine learning and
cybernetics, data is often with high dimensionality. High-

dimensional data significantly increases the computational
costs, and brings large noise [1]. To mitigate this problem,
dimensionality reduction techniques [2–6] are always used as
the preprocessing step. Dimensionality reduction aims to learn
the low-dimensional representation of the high-dimensional
data, while preserving the discriminant information. Linear
discriminant analysis (LDA) [4] is one of the most popular
supervised dimensionality reduction methods. Given the class
label of each sample, the goal of LDA is to learn a linear
transformation, which pulls the within-class samples together
and pushes the between-class samples apart. In the past few
decades, LDA has been widely used in practical applications
involving high-dimensional data, such as object recognition [7,
8], image retrieval [9], and image representation [10–12].

Despite its good properties, LDA has several intrinsic draw-
backs. Firstly, the dimensionality reduced by LDA must be less
than the class number, termed as over-reducing problem [13].
Supposing the class number is c, the rank of the between-
class scatter matrix Sb is at most c − 1. Consequently, LDA
can find at most c − 1 projection directions, which may be
insufficient for retaining the valuable features, especially for
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binary classification tasks. Secondly, LDA suffers from the
small sample size (SSS) problem [14]. LDA needs to calculate
the inverse matrix of the within-class scatter Sw. When the
data dimensionality is very high, Sw becomes singular. Then
LDA becomes unsolvable. Thirdly, LDA neglects the data
structure in the local area. It assumes that the data obeys the
Gaussian distribution and the data structure within each class is
consistent with the global structure. However, this assumption
is not true for the real-world tasks. Taking object clustering
as an example, each object has its own pose variation, so the
object images may be multi-modally distributed [15–19]. In
these occasions, the performance of LDA degrades because it
cannot capture the local data structure.

In the past two decades, many variants of the original LDA
have been proposed, trying to improve LDA from different
perspectives. To cope with the over-reducing problem, Wan et
al. [13] designed the full rank between-class scatter matrix.
Meanwhile, some thoughtful methods are proposed to address
the SSS problem in different ways. Lu et al. [20] regularized
the within-class scatter to make it reversible. Li et al. [21] put
forward the Maximum Margin Criterion (MMC), which avoids
calculating the inverse matrix of the within-class scatter. Ye
et al. [22] developed the 2-dimensional version of LDA such
that they do not need to convert the each matrix representation
sample into a high-dimensional vector. The above algorithms
solve the over-reducing and SSS problems excellently. But the
exploration of local data relationship remains to be an open
issue. A common solution to this problem is to find the k
nearest neighbors of each sample, and then learn the linear
transformation to pull the within-class neighbors together
while making the between-class neighbors separable [23–
26]. The shortcoming of this strategy is that the neighboring
relationship within the input data space may be affected by
the noise. Moreover, it is difficult to decide an appropriate k
for various kinds of tasks.

In this paper, we present a new supervised dimensionality
reduction method, Locality Adaptive Discriminant analysis
(LADA). When processing data with matrix representation,
such as images, traditional dimensionality reduction meth-
ods usually transform the data into vector form, resulting
in the curse of dimensionality. To tackle this problem, we
also develop the 2-Dimensional LADA (2DLADA), which is
directly applicable for matrix data. The proposed framework
can be considered as an iterative procedure: 1) the local data
relationship is learned according to the samples’ transformed
distances; 2) the linear transformation is updated to pull the
within-class similar samples together. The advantages of the
proposed LADA and 2DLADA are summarized as follows:
(1) They do not resort to any assumption on the data dis-

tribution, and avoid the over-reducing and SSS problems
implicitly.
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(2) They incorporate local structure learning into the discrim-
inant analysis framework, so the local data structure can
be exploited in the subspace, which contains less noise.

(3) They do not need to tune any parameter, and can be
solved by the proposed optimization methods with proved
convergence.

Compared to the conference version of this research [27],
this paper is substantially improved by introducing more
technical parts and experimental evaluations. Specifically: (1)
Section III gives more details about the optimization method;
(2) Section IV proposes the 2-dimensional version of LADA;
(3) Section V gives more experimental results, the variances of
the performance versus the training number are also provided;

The remaining parts of this paper are organized as follows.
Section II reviews the classical LDA and some of its variants.
Section III presents the proposed LADA and the resultant opti-
mization algorithm. Section IV describes the 2DLADA and the
optimization method. Section V gives the theoretical analysis
and experimental results on real-world datasets. Section VII
summarizes the conclusions.

II. RELATED WORK

A. Linear Discriminant Analysis Revisited

Denote the data matrix as X = [x1,x2, · · · ,xn] ∈ Rd×n,
where n is the number of samples and each sample xj is a
d-dimensional column vector. The goal of LDA [4] is to find
a linear transformation matrix W ∈ Rd×m to embed each
sample into a m-dimensional vector:

yj = WTxj . (1)

When m is less than d, the compact representation of the
original data can be achieved. Meanwhile, LDA considers that
the optimal transformation should maximize the divergence
of the between-class samples, while minimize the separation
of the within-class samples. Based on the above theory, the
objective function of LDA is formulated as

max
W

c∑
i=1

ni||WT (µi − µ)||22
c∑

i=1

ni∑
j=1

||WT (xi
j − µi)||22

, (2)

where c is the number of classes, ni is the number of samples
in class i, µi is the mean of the samples in class i, µ is the
mean of all the samples, and xi

j is the j-th sample in class i.
Defining the between-class scatter matrix Sb ∈ Rd×d and the
within-class scatter matrix Sw ∈ Rd×d as

Sb =

c∑
i=1

ni(µ
i − µ)(µi − µ)T ,

Sw =

c∑
i=1

ni∑
j=1

(xi
j − µi)(xi

j − µi)
T
,

(3)

problem (2) can be transformed into the trace ratio form:

max
W

tr(WTSbW)

tr(WTSwW)
, (4)

where tr() is the trace operator. Since it is difficult to solve
problem (4), many researchers optimize the following ratio
trace problem instead

max
W

tr(
WTSbW

WTSwW
), (5)

and the optimal W is composed of the eigenvectors associated
with the m largest eigenvalues of S−1w Sb. According to Jia et
al. [28], the ratio trace form leads to the suboptimal solution.

Because LDA calculates the inverse matrix of Sw, the SSS
problem occurs when Sw is irreversible. The rank of Sb is
at most c − 1, which means that S−1w Sb has at most c − 1
non-zeros eigenvalues, leading to the over-reducing problem.
In addition, As can be seen from the above formulations,
LDA assumes that the divergence of the between-class samples
can be reflected by the subtraction of the class mean vectors,
which implies that all the classes share the same covariance.
However, in real-world applications, the data samples may
reside on a submanifold of the ambient space [24, 29, 30]. The
ignorance of local data relationship makes LDA unsuitable for
the samples with complex distributions.

B. Locality-Aware Variants of LDA

When the data distribution is more complex than Gaussian,
the exploration of the local data structure is essential for a
good performance. To this end, some locality-aware variants
of LDA are proposed.

To capture the data structure, some methods defined the
scatter matrices according to the samples’ local relationship.
Bressan and Vitria [25] found the k nearest neighbors of each
sample and replaced the class mean with the average of the
neighbors. Sugiyama [31] used Gaussian kernel to weight the
scatter matrices. Nie et al. [23] denoted the scatter matrices as
the covariances of the within-/between-class neighbors. Cai
et al. [24] emphasized the samples with more within-class
neighbors by imposing an additional constraint on the degree
matrix of the kNN graph. Weinberger et al. [32] learned a
Mahanalobis distance metric to find the largest margin for the
k nearest neighbors. Fan et al. [26] trained a model within
the neighborhood of each test sample separately, so it is time-
consuming. Dong et al. [33] constructed the similarity graph
with sparse representation, and utilized the learned similarity
into the computation of scatter matrices. Zhang et al. [34]
learned the subspace from the similar and dissimilar pairs,
without the explicit label information. Nie et al. [35] found the
neighbors of each sample, and learned the similarity between
the neighbors. Nie et al. [36] imposed the binary and `0
constraints on the similarity graph, such that a weighted kNN
graph can be obtained.

These methods build an affinity graph (Guassian graph,
kNN graph) in the input space. However, the graph quality is
determined by many factors, such as the scale of analysis and
the data noise. Especially, when noise is large, the intrinsic
similar samples may be far away from each other in the
input space. So it is necessary to exploit the underlying data
geometry in the desired subspace, which contains less noise
and more significant statistical characteristics.
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C. 2-Dimensional Variants of LDA

Traditional LDA methods work with vector data. When
dealing with samples in matrix representation, they transform
them into vectors by concatenating the rows together. The
matrix-to-vector alignment produces data with very high-
dimensionality, and discards the spatial information. An ef-
fective solution to this problem is to perform 2-dimensional
discriminant analysis, which reduces the dimensionality along
both the row and column directions.

Denote the data matrix X = [X1,X2, · · · ,Xn] ∈ Rd1×d2n,
where n is the sample number and each sample Xj ∈ Rd1×d2

is a matrix. Ye et al. [22] proposed to project each sample
into a low dimensional matrix Y ∈ Rm1×m2 (m1 < d1 and
m2 < d2)

Yj = LTXjR, (6)

where L ∈ Rd1×m1 and R ∈ Rd2×m2 are the transformation
matrices along row and column directions respectively. Similar
to Eq. (2), the objective function of the 2DLDA is rewritten
as

max
L,R

c∑
i=1

ni||LT (µi − µ)R||2F
c∑

i=1

ni∑
j=1

||LT (Xi
j − µi)R)||2F

, (7)

where the definitions of ni, c, µi and µ are the same as
those in Eq. (2), and Xi

j is the j-th sample in class i. With
the above formulation, the matrix representation data can be
processed directly. Sanguansat et al. [37] performed 2DLDA
on the results of 2DPCA [38], and defined the scatter matrices
with the prior probability of each class. To reduce the SSS
problem, Yang and Dai [39] proposed the 2-Dimensional Max-
imum Margin Criterion (2DMMC) method, and the objective
function is represented as the subtraction of the between-class
and within-class scatter matrices. Wang et al. [40] introduced
an additional weighted parameter on 2DMMC to balanced the
between-class and within-class scatters.

The 2-dimensional methods successfully avoid the problems
brought by the matrix-to-vector alignment, and have lower cost
in time and space than LDA. But they still share the same
assumption on the data distribution as LDA.

III. LOCALITY-AWARE DISCRIMINANT ANALYSIS

A. Methodology

As discussed previously, the investigation of local manifold
structure is crucial for handling the data with complex dis-
tributions. So we propose to learn the local data relationship
with a similarity graph, and optimize the linear transformation
to pull the similar points together.

Given the data samples X = [x1,x2, · · · ,xn] ∈ Rd×n

(d is the dimensionality), the objective function of LADA is
formulated as

min
W,S

c∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2‖WT (xi

j−x
i
k)‖22

1
n

n∑
j=1

n∑
k=1

‖WT (xj−xk)‖22
,

s.t.WTW = I,
ni∑
k=1

sijk = 1, sijk ≥ 0,

(8)

where the n is the number of samples, I ∈ Rm×m is the
identity matrix, sijk is an element of the similarity graph S,
and a larger value of sijk indicates a higher similarity between
the j-th and k-th sample in class i. xj is the j-th sample in the
whole dataset (different from xi

j). The remaining definitions
are the same as those in LDA.

In problem (8), the orthonormal constraint WTW = I
ensures the uniqueness of the optimal W. To avoid the trivial
solution where the optimal graph is an identity matrix, we
fix sijj as 0 and update the other elements in each iteration.
When the transformation matrix W is obtained, sijk will
be adjusted according to the samples’ transformed distance
||WT (xi

j−xi
k)||22, so the local data relationship in the learned

subspace can be learned. When the data graph S is fixed, the
optimal W will emphasize the within-class samples with large
similarity and pull them as close as possible. By updating
S and W iteratively, the proposed method incorporates local
structure learning into the discriminant analysis framework.

B. Optimization Algorithm

Problem (8) involves two variables, so we propose to solve it
with an alternative strategy, minimizing the objective function
with respect to one variable while fixing the other one.

When S is fixed, defining the within-class scatter S̃w ∈
Rd×d and total scatter S̃t ∈ Rd×d as

S̃w =

c∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2
(xi

j − xi
k)(x

i
j − xi

k)
T
,

S̃t =
1

n

n∑
j=1

n∑
k=1

(xj − xk)(xj − xk)
T
.

(9)

problem (8) is converted into

min
WTW=I

tr(WT S̃wW)

tr(WT S̃tW)
, (10)

which is equivalent to the following maximization problem:

max
WTW=I

tr(WT S̃tW)

tr(WT S̃wW)
, (11)

Supposing the rank of S̃t is r, we discuss the optimization of
problem (11) in two cases.

Case 1: m > d− r. Denoting the p-th smallest eigenvalues
of S̃w as βp, it holds that min tr(WT S̃wW) =

∑m
p=1 βp

with the constraint WTW = I. Obviously, S̃w is a positive
semi-definite matrix, so

∑m
p=1 βp is larger than zero when

m is larger than d − r. Then we have tr(WT S̃wW) ≥
min tr(WT S̃wW) > 0.

Denoting the objective value of problem (8) as λ, Nie et
al. [23] have given the bound of λ as

tr(S̃t)

tr(S̃w)
≤ λ ≤

∑m
p=1 αp∑m
p=1 βp

, (12)

where αp is the p-th largest eigenvalues of S̃t. In addition,
denoting the sum of the first m smallest eigenvalues of S̃t −
λS̃w as γ, Guo et al. [41] have proved that the optimal λ∗

should make γ equal to zero. With tr(WT S̃wW) > 0, γ > 0
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indicates that λ is smaller than the optimal value and vice
visa. Together with bound of λ, the optimal value λ∗ can be
found by binary search. Then the optimal W∗ is formed with
eigenvectors associated with the first m smallest eigenvalues
of S̃t − λ∗S̃w.

Case 2: m ≤ d − r. In this case, we have
min tr(WT S̃wW) = 0 because the first m smallest eigen-
values of S̃t are all zero. Therefore, the optimal W∗ resides
in the null space of S̃w and problem (11) is equivalent to

max
VTV=I,V∈R(d−r)×m

tr(VT (ZT S̃tZ)V), (13)

where Z ∈ Rd×(d−r) is formed with the eigenvectors associat-
ed with the d−r zero eigenvalues of S̃w. The optimal V∗ can
be obtained with the first m largest eigenvectors of ZT S̃tZ,
so the optimal solution to problem (11) is W∗ = ZV∗.

The proposed method does not need to calculate the inverse
matrix, so the SSS problem is avoided implicitly. In addition,
in the proposed method, S̃t is of full rank, so the over-reducing
problem does not exist.

When W is fixed, problem (8) becomes

min
S

c∑
i=1

ni
ni∑
j=1

ni∑
k=1

sijk
2 ∥∥WT (xi

j − xi
k)
∥∥2
2
,

s.t.
ni∑
k=1

sijk = 1, sijk ≥ 0.
(14)

For each i and j, the above problem is simplified into

min
u

ni∑
k=1

u2k||WT (xi
j − xi

k)||22,

s.t.uT1 = 1,u ≥ 0,
(15)

where u ∈ Rni×1 is a column vector with its k-th element
uk equal to sijk, and 1 ∈ Rni×1 is a column vector with all
the elements as 1. Defining a diagonal matrix V with its k-
th element vkk equal to ||WT (xi

j − xi
k)||22, problem (15) is

reduced to
min

uT 1=1,u≥0
uTVu. (16)

Removing the constraint u ≥ 0, the Lagrangian function of
problem (16) is written as

L(u, η) = uTVu− η(uT1− 1), (17)

Calculating the derivative of the above problem with respect
to u and setting it to zero, we have

2Vu− η1 = 0. (18)

Together with the constraint uT1 = 1, the optimal solution
u∗ is obtained as

u∗k =
1

vkk
× (

ni∑
p=1

1

vpp
)−1. (19)

Fortunately, we can see that u∗ satisfies the constraint u ≥
0, so u∗ is the final solution to problem (16). Similarly, the
optimal solution to problem (15) is

sijk
∗
=

1

||WT (xi
j − xi

k)||22
× (

ni∑
p=1

1

||WT (xi
j − xi

p)||22
)−1.

(20)

By updating W and S iteratively, the local data structure
in the desired subspace is exploited. Different from previous
works, the proposed method learns the local structure adaptive-
ly without any additional parameter. The overall optimization
algorithm for problem (8) is described in Algorithm 1.

It is easy to see that the computational cost of Algorithm 1
concentrates on the computation of W and S. When updating
W, the complexity is O(n2 + n2d2 + d3). When updating S,
the complexity is O(n2d2). Ignoring the constant terms, the
computational complexity of each iteration is O(n2 +n2d2 +
d3), which is the same as the traditional LDA.

Algorithm 1 Algorithm of LADA
Input: Data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n, desired

dimensionality m.
1: Initial the data graph S as sijk = 1

ni
.

2: repeat
3: Compute the optimal W∗ by solving problem (10).
4: Update S according to Eq. (20).
5: until Converge

Output: Projected data Y = W∗X.

IV. 2-DIMENSIONAL LOCALITY-AWARE DISCRIMINANT
ANALYSIS

A. Methodology

Given the data matrix X = [X1,X2, · · · ,Xn] ∈ Rd1×d2n

(d1 and d2 are the data dimensionalities along the row and
column directions respectively), the objective function of 2D-
LADA is written as

min
L,R,S

c∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2‖LT (Xi

j−X
i
k)R‖2F

1
n

n∑
j=1

n∑
k=1

‖LT (Xj−Xk)R‖2F
,

s.t.LTL = I,RTR = I,
ni∑
k=1

sijk = 1, sijk ≥ 0,

(21)

where S ∈ Rn×n is the similarity graph, sijk is an element
of S and indicates the similarity between the j-th and k-th
sample in class i, Xj is the j-th sample in the input dataset.
The definition of L, R and Xi

j are the same as those in Eq. (7).
Different from LADA, 2DLADA projects the data along both
the row and column directions with L and R, so it is directly
applicable to data with matrix representation.

Compared with traditional 2DLDA, the proposed 2DLADA
performs local structure learning and discriminant analysis
simultaneously. So 2DLADA is free from the Gaussian dis-
tribution assumption, and can handle the data with complex
structures. In the following, the optimization strategy for
problem (21) is presented.

B. Optimization Algorithm

Problem (21) involves three variable to be optimized, so we
solve one variable while keeping the other two fixed.
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When S and R are fixed, denoting two scatter matrices
Sr
w and Sr

t as

S̃r
w =

c∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2
(Xi

j −Xi
k)RRT (Xi

j −Xi
k)

T
,

S̃r
t =

1

n

n∑
j=1

n∑
k=1

(Xj −Xk)RRT (Xj −Xk)
T
,

(22)

the original problem transforms into

min
LTL=I

tr(LT S̃r
wL)

tr(LT S̃r
tL)

. (23)

Thus, the computation of optimal L∗ is the same as the
optimization of W in problem (10).

When S and L are fixed, the scatter matrices Sl
w and Sl

t

are defined as

S̃l
w =

c∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2
(Xi

j −Xi
k)

TLLT (Xi
j −Xi

k),

S̃l
t =

1

n

n∑
j=1

n∑
k=1

(Xj −Xk)
TLLT (Xj −Xk).

(24)

Since tr(AB) is equal to tr(BA), the optimal R can be
obtained with the following problem:

min
RTR=I

tr(RT S̃l
wR)

tr(RT S̃l
tR)

. (25)

When L and R are fixed, the optimization of S yields to

min
S

c∑
i=1

ni
ni∑
j=1

ni∑
k=1

sijk
2 ∥∥LT (Xi

j −Xi
k)R

∥∥2
F
,

s.t.
ni∑
k=1

sijk = 1, sijk ≥ 0.
(26)

According to the optimization of problem (14), the optimal S∗

is computed as

sijk
∗
=

1

||LT (Xi
j −Xi

k)R||2F
×(

ni∑
p=1

1

||LT (Xi
j −Xi

p)R||2F
)−1.

(27)
The algorithm of 2DLADA is described in Algorithm 2.

Denoting d as max (d1, d2) , the upper bound computational
complexity of each iteration is O(n2 + n2d2 + d3), which is
the same as the 2DLDA.

Algorithm 2 Algorithm of 2DLADA
Input: Data matrix X = [X1,X2, · · · ,Xn] ∈ Rd1×d2n,

desired dimensionality m1 and m2.
1: Initial the data graph S as sijk = 1

ni
.

2: repeat
3: Compute the optimal L∗ by solving problem (23).
4: Compute the optimal R∗ by solving problem (25).
5: Update S according to Eq. (27).
6: until Converge

Output: Projected data Y = L∗TXR∗.
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Fig. 1. Projection directions learned by LDA and LADA. LDA finds the
correct direction when the class distribution is unimodal (a), but fails on
muti-modal distributed data (b). LADA works well on both cases.

V. EXPERIMENTS

In this section, experiments are conducted to verify the
effectiveness of the proposed LADA and 2DLADA. Firstly,
synthetic datasets are used to demonstrate the theoretical
significance of LADA. Then, results on real-world benchmarks
show the performance of LADA and 2DLADA.

A. Performance on Unimodal and Multi-Modal Datasets

Two datasets are constructed to illustrate the significance
of local structure learning. As shown in Fig. 1 (a), the first
dataset is consisted of the data points generated by Gaussian
distribution. Both LDA and LADA find the correct projection
direction. The points in the second dataset are multi-modally
distributed, which means each class has a unique distribution.
As shown in Fig. 1 (b), LDA fails on the multi-modal datasets
because the global data structure is unreliable. LADA still
works well since it emphasizes the local relationship between
the data samples. These results validate that LADA is able to
handle the data with complicated distributions.

B. Performance on Three-Ring Datasets

To evaluate whether LADA is able to preserving the intrinsic
manifold structure, we conduct experiments on two three-ring
datasets. As visualized in Fig. 2 (a) and (e), each datasets
contains the samples from three classes. In the first two dimen-
sions, the samples are distributed in concentric circles, while
the other eight dimensions are noises randomly generated in 0
and θ. θ is set as 1 and 100 for the two datasets respectively.

We compare the proposed LADA with LDA [4] and Local
Fisher Discriminant Analysis (LFDA) [31]. LFDA captures the
local data structure with the Gaussian kernel, and emphasizes
the similar samples when calculating the scatter matrices.

The two-dimensional subspace found by different methods
are shown in Fig. 2 (b)-(d) and (f)-(h). Due to the neglect
of local structure, LDA cannot find the correct subspace even
when the noise factor θ is 1. Benefited from the utilization
of similarity graph, LFDA performs well when noise is small.
However, it highly relies on the samples’ distances in the input
space, so it fails when the noise is large. The proposed LADA
captures the samples’ local relationship in the subspace, so it
preserves the intrinsic geometrical structure well and shows
robustness to the noise in the input space.
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(f) LDA, θ = 100
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(h) LADA, θ = 100

Fig. 2. (a) and (e) are the first two dimensions of the two datasets. (b)-(e) and (f)-(h) show the two-dimensional subspaces learned by LDA, LFDA and
LADA on the two datasets. The performance of LDA is unsatisfying due to the neglect of local manifold structure. LFDA fails when noise is 100, because
its performance depends on the data relationship in the input space. Under different noises, LADA is able to find the discriminant subspace while preserving
the manifold structure.

TABLE I
DETAILED DESCRIPTION OF THE DATASETS.

UMIST Olivettifaces YALE ALLAML TOX 171 BA
Sample number 575 400 165 72 171 1404
Class number 20 40 15 2 4 36

#Dim 112×92 64×64 80×80 7129×1 5748×1 20×16
#Dim after PCA 563 398 160 66 127 291

#Reduced dim (1D) [5,· · · ,70] [5,· · · ,70] [5,· · · ,70] [5,· · · ,65] [5,· · · ,70] [5,· · · ,70]
#Dim after resizing 25×25 25×25 25×25 — — —
#Reduced dim (2D) [1×1,· · · ,24×24] [1×1,· · · ,24×24] [1×1,· · · ,24×24] — — —

C. Performance on Real-world Datasets

In this part, we show the performance of LADA and 2DLA-
DA, and compare them with the state-of-the-art dimensionality
reduction methods.

Datasets: For 1D methods, we employ six datasets for
evaluation: three face image datasets, i.e., UMIST [42], Olivet-
tifaces [43] and YALE [44], two biological datasets, i.e., AL-
LAML [45] and TOX 171 [45], and one handwritten dataset,
i.e., Binary Alphabet (BA) [46]. Since some competitors have
the SSS problem, we take principle Component Analysis
(PCA) [2] as preprocessing for a fair comparison, keeping
99.5% of the covariance.

For 2D methods, experiments are conducted on UMIST,
Olivettifaces and Yale. The 2D methods do not have the SSS
problem, so they do not need PCA. Instead, we resize all the
images into a resolution of 25× 25 pixels for efficiency. The
descriptions of these datasets are given in Table I. The UMIST
dataset contains 575 images of 20 persons. The images of
each person cover a ranges of poses from profile to frontal
views. We use the pre-cropped version in the experiments.
Olivettifaces dataset consists of the face images of 40 persons.

For each person, the images were taken at different poses and
facial expressions (smilling/not smilling). YALE dataset con-
tains 165 images of 15 individuals. The images are captured
under different lighting effects, facial expressions (happy, sad)
and facial details (with/without glasses).

Competitors: the proposed LADA is compared with four
state-of-the-art algorithms, including LDA, Maximum Margin
Criterion (MMC) [21], Non-parametric Discriminant Anal-
ysis (NDA) [25] and Local Fisher Discriminant Analysis
(LFDA) [31]. For NDA and LFDA, the scaling parameter
k is set as 5 empirically. The classification result without
dimensionality reduction is taken as the baseline, termed as
RAW.

For the 2DLADA, we employ five 2D dimensionality re-
duction methods for comparison. They are 2-Dimensional
PCA (2DPCA) [38], Robust 2DPCA (R2DPCA) [47], 2-
Dimensional Locality Preserving Projections (2DLPP) [48],
2-Dimensional LDA (2DLDA) [22] and 2-Dimensional MMC
(2DMMC) [39].

Evaluation mechanism: for each class, we randomly choose
N images for training and the remaining images are used for
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TABLE II
THE AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) ON UMIST DATASET. THE BEST REDUCED DIMENSIONALITY IS SHOWN IN THE

BRACKETS. THE BEST RESULTS ARE IN BOLD FACE.

1D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 87.88±2.87 (—) 90.67±2.16 (—) 92.64±2.03 (—) 94.66±1.75 (—) 95.23±1.91 (—)
LDA 65.02±5.83 (19) 66.84±7.06 (19) 67.39±6.26 (19) 68.57±7.16 (19) 76.19±6.47 (19)
MMC 87.70±2.78 (65) 90.30±2.08 (70) 96.04±1.99 (15) 94.54±1.90 (70) 95.25±2.04 (65)
NDA 91.04±2.67 (20) 94.11±1.34 (55) 95.86±1.77 (70) 96.86±1.18 (35) 97.33±1.35 (35)
LFDA 88.34±2.33 (70) 90.71±2.31 (70) 91.93±2.30 (70) 92.91±1.77 (70) 93.73±1.76 (70)
LADA 94.44±1.81 (10) 95.70±1.09 (10) 96.67±1.74 (20) 97.19±1.28 (10) 97.79±1.34 (15)

2D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 88.13±1.97 (—) 90.90±1.70 (—) 93.64±1.81 (—) 95.14±1.56 (—) 93.97±1.78 (—)

2DPCA 91.43±2.04 (3) 93.14±0.88 (3) 95.45±1.62 (3) 97.78±1.58 (3) 96.40±1.68 (3)
R2DPCA 91.16±2.48 (5) 93.07±1.26 (4) 94.74±1.51 (5) 96.50±1.69 (4) 94.93±1.40 (4)
2DLPP 91.17±2.07 (2) 94.23±0.87 (2) 94.31±1.37 (2) 97.31±0.63 (2) 96.51±1.49 (2)
2DLDA 86.33±2.12 (10) 89.74±1.88 (12) 91.57±1.56 (9) 94.38±0.80 (12) 95.31±1.88 (10)
2DMMC 91.56±2.04 (6) 93.79±1.36 (6) 95.13±1.52 (6) 96.76±1.82 (6) 95.20±1.17 (6)
2DLADA 93.10±1.98 (14) 95.96±1.47 (16) 96.48±1.58 (13) 98.03±1.05 (17) 97.76±1.07 (15)

TABLE III
THE AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) ON OLIVETTIFACES DATASET. THE BEST REDUCED DIMENSIONALITY IS SHOWN IN

THE BRACKETS. THE BEST RESULTS ARE IN BOLD FACE.

1D Methods N = 6 N = 7 N = 8 N = 9
RAW 90.13±1.88 (—) 92.33±2.33 (—) 93.63±1.89 (—) 94.13±3.73 (—)
LDA 64.21±3.17 (39) 61.58±3.07 (39) 60.75±6.18 (39) 57.45±5.74 (39)
MMC 89.44±2.14 (65) 92.17±2.25 (65) 94.25±1.42 (40) 93.25±2.32 (35)
NDA 93.06±2.04 (65) 94.13±3.03 (45) 92.50±5.19 (70) 89.54±4.18 (70)
LFDA 87.50±1.80 (70) 88.75±4.72 (70) 89.37±2.89 (70) 83.25±2.80 (70)
LADA 95.38±1.84 (50) 94.67±1.92 (60) 95.63±1.73 (70) 95.14±2.65 (60)

2D Methods N = 6 N = 7 N = 8 N = 9
RAW 90.94±2.60 (—) 93.04±2.43 (—) 94.82±2.48 (—) 96.07±2.84 (—)

2DPCA 91.72±2.39 (8) 93.51±2.33 (9) 95.60±2.13 (12) 96.55±2.94 (12)
R2DPCA 91.03±2.65 (19) 93.04±2.58 (10) 95.12±2.07 (11) 96.55±2.83 (11)
2DLPP 91.47±2.61 (17) 93.08±2.43 (10) 95.12±2.11 (8) 96.07±2.51 (13)
2DLDA 90.47±2.68 (14) 91.49±2.62 (14) 93.99±2.03 (16) 95.60±2.66 (15)
2DMMC 91.28±2.47 (19) 93.19±2.33 (22) 95.30±2.28 (19) 96.43±2.74 (13)
2DLADA 94.19±2.51 (16) 95.25±2.52 (20) 97.08±1.51 (19) 97.62±1.96 (18)

TABLE IV
THE AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) ON YALE DATASET. THE BEST REDUCED DIMENSIONALITY IS SHOWN IN THE

BRACKETS. THE BEST RESULTS ARE IN BOLD FACE.

1D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 76.40±3.24 (—) 74.25±3.43 (—) 74.00±6.89 (—) 78.50±7.41 (—) 76.33±9.30 (—)
LDA 55.47±5.31 (14) 57.33±4.31 (14) 48.33±7.44 (14) 53.83±8.39 (14) 52.33±6.31 (14)
MMC 76.67±3.33 (65) 74.92±3.31 (45) 90.11±5.60 (15) 79.33±7.57 (25) 77.00±7.77 (45)
NDA 83.33±3.78 (15) 84.58±4.41 (15) 84.78±6.26 (35) 86.00±6.72 (20) 76.67±6.45 (40)
LFDA 84.93±6.44 (50) 86.00±3.35 (40) 81.89±6.93 (60) 83.17±6.95 (60) 87.67±7.68 (40)
LADA 91.20±3.02 (45) 92.82±2.86 (70) 94.89±3.03 (70) 95.83±3.75 (70) 96.00±3.67 (70)

2D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 76.84±3.59 (—) 77.06±4.32 (—) 77.93±4.87 (—) 76.67±7.30 (—) 76.22±7.84 (—)

2DPCA 76.98±3.44 (10) 77.17±4.24 (9) 78.30±5.06 (6) 78.33±5.43 (2) 77.56±6.50 (2)
R2DPCA 76.89±3.25 (13) 77.06±4.32 (20) 78.07±5.03 (13) 77.00±7.37 (11) 76.22±7.83 (7)
2DLPP 76.49±4.27 (2) 78.06±4.06 (2) 79.33±5.01 (2) 79.11±6.61 (2) 78.89±8.81 (2)
2DLDA 81.34±3.94 (14) 83.44±4.57 (13) 84.81±4.66 (14) 85.67±6.95 (14) 85.56±4.32 (12)
2DMMC 77.16±3.75 (18) 77.39±4.44 (18) 78.81±4.89 (14) 77.78±7.32 (11) 77.33±6.97 (17)
2DLADA 85.60±3.81 (23) 87.00±4.27 (19) 88.96±4.24 (22) 89.11±4.86 (17) 90.22±4.04 (17)
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TABLE V
THE AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) ON ALLAML DATASET. THE BEST REDUCED DIMENSIONALITY IS SHOWN IN THE

BRACKETS. THE BEST RESULTS ARE IN BOLD FACE.

1D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 78.52±7.61 (—) 82.24±6.07 (—) 81.43±4.39 (—) 81.48±5.31 (—) 84.81±6.17 (—)
LDA 56.51±7.18 (1) 56.72±8.28 (1) 54.64±6.42 (1) 53.89±9.49 (1) 59.42±9.24 (1)
MMC 78.55±5.61 (15) 82.24±6.07 (15) 88.57±4.46 (5) 82.22±3.12 (5) 85.14±6.01 (15)
NDA 75.53±6.53 (25) 80.52±9.19 (15) 76.79±9.77 (5) 83.52±8.66 (5) 77.88±8.86 (5)
LFDA 85.33±4.96 (50) 85.34±7.33 (40) 88.93±4.36 (45) 86.11±4.74 (30) 87.31±3.12 (40)
LADA 87.67±5.62 (5) 88.10±5.64 (15) 89.82±2.99 (35) 90.41±3.63 (25) 90.38±4.71 (55)

TABLE VI
THE AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) ON TOX 171 DATASET. THE BEST REDUCED DIMENSIONALITY IS SHOWN IN THE

BRACKETS. THE BEST RESULTS ARE IN BOLD FACE.

1D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 52.18±4.72 (—) 52.94±3.75 (—) 56.62±3.39 (—) 58.15±4.76 (—) 57.79±3.26 (—)
LDA 35.10±9.42 (3) 30.14±7.16 (3) 32.45±5.12 (3) 36.07±4.84 (3) 36.49±8.49 (3)
MMC 52.65±5.33 (20) 52.94±3.58 (25) 59.78±3.11 (5) 58.15±4.76 (35) 58.24±2.86 (35)
NDA 54.35±4.20 (5) 49.44±5.24 (45) 51.22±5.53 (35) 55.41±5.15 (45) 49.24±4.79 (50)
LFDA 57.01±4.67 (70) 56.78±3.28 (60) 59.78±5.21 (70) 61.48±4.23 (65) 60.53±4.03 (40)
LADA 60.27±4.13 (10) 59.58±4.26 (10) 62.37±3.91 (20) 67.11±5.28 (15) 69.08±5.18 (25)

TABLE VII
THE AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) ON BA DATASET. THE BEST REDUCED DIMENSIONALITY IS SHOWN IN THE

BRACKETS. THE BEST RESULTS ARE IN BOLD FACE.

1D Methods N = 6 N = 7 N = 8 N = 9 N = 10
RAW 54.13±1.42 (—) 56.41±0.91 (—) 57.61±0.85 (—) 58.18±1.85 (—) 59.73±0.90 (—)
LDA 13.01±1.26 (35) 10.32±1.99 (35) 9.72±2.84 (35) 10.12±1.27 (35) 15.65±1.17 (35)
MMC 55.18±1.50 (40) 57.27±1.03 (50) 59.86±1.51 (70) 60.20±0.96 (70) 61.81±1.38 (65)
NDA 35.40±1.63 (35) 29.18±1.85 (60) 19.94±1.17 (60) 7.57±1.48 (70) 16.39±0.63 (70)
LFDA 24.71±1.87 (70) 20.99±2.21 (70) 27.21±1.92 (70) 34.32±1.79 (70) 39.19±1.25 (70)
LADA 56.06±1.50 (35) 58.28±0.87 (25) 60.25±0.48 (25) 60.94±1.7 (40) 62.22±0.82 (25)

testing. In UMIST, YALE, ALLAML, TOX 171 and BA, N is
set as 6, 7, 8, 9 and 10. In Olivettifaces, N is set as 6, 7, 8 and
9. After performing dimensionality reduction, nearest neighbor
classifier is used to classify the obtained low-dimensional data.
We repeat the random split for 30 times, and report the average
classification accuracy and standard deviation.

For the 1D methods, the optimal reduced dimensionality is
found by grid search in the range of [5, 10, · · · , 70]. Since the
data dimensionality of ALLAML is 66, we search the optimal
reduced dimensionality in the range of [5, 10, · · · , 65]. For the
2D methods, the optimal reduced dimensionality is searched in
the range of [1×1, 2×2, · · · , 24×24]. LDA and 2DLDA have
the over-reducing problem, so their maximum dimensionalities
are set as c − 1 and (c − 1) × (c − 1) respectively (c is the
class number).

Experimental results: the classification results on different
are exhibited in Table II, III, IV, V, VI and VII respectively.
Each method is with its optimal reduced dimensionality. The
classification accuracy increases with the number of train-
ing samples. Among the 1D methods, LADA achieves the
best performance on all the datasets. The results of LDA
are unsatisfying because it can only find c − 1 projection
directions, which is insufficient for sustaining the discriminant

information. MMC overcomes the over-reducing problem, and
performs better than LDA. But it also assumes that the samples
are Gaussian distributed. NDA and LFDA use the kNN and
Gaussian graph respectively to capture the local manifold.
NDA outperforms LFDA on most occasions, because the
kNN graph preserves the classification boundary better than
Gaussian graph. However, the performance of NDA is still
inferior to the proposed LADA since it relies on the samples
distances in the input data space. LADA learns the local data
structure adaptively in the learned subspace, so it is robust to
the data noise and shows the best classification results.

As can be seen in Table II, III and IV, most of the 2D
methods outperform the baseline, which implies the fact that
the discriminant features reside in a low dimensional subspace.
This phenomenon is not very manifest for the 1D methods
due to the utilization of PCA. Since the input data is with
relatively low dimensionality, the over-reducing problem does
not affect 2DLDA too much. The classification accuracies of
2DPCA, R2DPCA, 2DLPP, 2DLDA and 2DMMC are very
close. Compared with the competitors, 2DLADA is able to
perceive the geometrical structure, so it shows the best results.
Note that, insteading of employing PCA to eliminate the null
space, we just use the resized raw data for the 2D methods.
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Fig. 3. Average classification accuracies of 1D methods versus the reduced dimensionality on the datasets.
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Fig. 4. Average classification accuracies of 2D methods versus the reduced dimensionality on (a) UMIST, (b) Olivettifaces and (c) YALE datasets.

Therefore, the performance of 2DLADA is inferior to LADA
on some occasions.

Fig. 3 and 4 visualize the changes of average classification
accuracy with respect to the reduced dimensionality. Here N
is set as 6. It can be seen that LADA achieves the highest
accuracy constantly. The performance 2DLADA is slightly
worse than the competitors when the dimensionality is low, but
it shows promising results when the dimensionality exceeds
10. As evident from the curves, the performance of each
method becomes relatively stable when the dimensionality
increases to a certain value, which indicates that the input
data contains redundant features and it is necessary to perform
dimensionality reduction.

VI. CONVERGENCE AND PARAMETER SENSITIVITY

In this section, we first discuss the convergence behaviors of
LADA and 2DLADA. Taking LADA as an example, the orig-
inal objective function is decomposed into two sub-problems
in the optimization. When updating W, the global minimum
solution is obtained by binary search. When updating S, the
final solution satisfies the KKT condition. So the objective
value decreases monotonously in the optimization of each
variable, and reaches to a local optimal value after a few
iterative steps. Fig. 5 and 6 plot the convergence curves of
LADA and 2DLADA, the optimization methods converge very
fast, which ensures the efficiency.

In addition, we also study the parameter sensitivity of the
locality-aware competitors. We run NDA, LFDA and LADA
on two random split of YALE dataset (different training and
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Fig. 5. Convergence curves of LADA on (a) UMIST, (b) Olivettifaces and (c) YALE datasets.
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Fig. 6. Convergence curves of 2DLADA on (a) UMIST, (b) Olivettifaces and (c) YALE datasets.
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Fig. 7. Classification accuracy of NDA, LFDA and LADA on two random
splits of YALE dataset. The results of NDA and LFDA change dramatically
with the scaling parameter k.

testing sets), and plot the classification accuracy curves with
respect to the scaling parameter k. As shown in Fig. 7, the
performance of NDA and LFDA change dramatically with the
value of k. The decision of k is important for the locality-
aware LDA methods. However, even on the same dataset,
the optimal k is different for two random splits. Thus, it is
impractical to decide an appropriate k for various real-world
tasks. The proposed LADA does not have this problem because
it is totally parameter-free.

VII. CONCLUSIONS

In this paper, we propose a new supervised dimensional-
ity reduction framework, including two algorithms, Locality
Adaptive Discriminant Analysis (LADA) and 2-Dimensional
LADA (2DLADA). LADA works with the data in vector rep-
resentation, while 2DLADA processes the matrix data directly.

The proposed methods integrate local structure learning and
discriminant analysis jointly, so they are able to exploit the
underlying data structure within the desired subspace. Since
they do not rely on the data relationship in the input space, the
influence of noise is alleviated. In addition, the over-reducing
and SSS problems are avoided implicitly in our methods.
Experimental results show that the proposed methods achieve
state-of-the-art performance on face image classification. The
parameter-free property improves the applicability of LADA
and 2DLADA.

In the future work, it is desirable to extend the proposed
framework to large-scale unlabeled data processing tasks.
Besides, we also plan to learn the pair-wise relationship with
the Graph Convolutional Network (GCN), which has been
demonstrated to be effective on graph learning.
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